CSC D70: Compiler Optimization Parallelization

Prof. Gennady Pekhimenko
University of Toronto
Winter 2018

The content of this lecture is adapted from the lectures of Todd Mowry and Tarek Abdelrahman
Announcements

• Final exam: Wednesday, April 11, 7:00-8:30pm; Room: IC120

• Covers the whole semester

• Course evaluation (right now)
Data Dependence

We define four types of data dependence.

- **Flow (true) dependence**: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_j uses.
- Implies that S_i must execute before S_j.

\[
S_1 : \quad A = 1.0 \\
S_2 : \quad B = A + 2.0 \\
S_3 : \quad A = C - D \\
\vdots \\
S_4 : \quad A = B/C
\]
Data Dependence

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[\vdots \]
\[S_4 : \quad A = B/C \]

We define four types of data dependence.

- **Anti dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) uses a data value that \(S_j \) computes.

- It implies that \(S_i \) must be executed before \(S_j \).

\[S_i \delta^a S_j \quad (S_2 \delta^a S_3) \]
Data Dependence

We define four types of data dependence.

- **Output dependence**: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_j also computes.

- It implies that S_i must be executed before S_j.

$$S_i \delta^o S_j \quad (S_1 \delta^o S_3 \quad \text{and} \quad S_3 \delta^o S_4)$$
Data Dependence

\[
S_1 : \quad A = 1.0 \\
S_2 : \quad B = A + 2.0 \\
S_3 : \quad A = C - D \\
\vdots \\
S_4 : \quad A = B/C
\]

We define four types of data dependence.

- **Input dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) uses a data value that \(S_j \) also uses.

- Does this imply that \(S_i \) must execute before \(S_j \)?

\[S_i \delta^T S_j \quad (S_3 \delta^T S_4) \]
Data Dependence (continued)

• The dependence is said to flow from \(S_i \) to \(S_j \) because \(S_i \) precedes \(S_j \) in execution.
• \(S_i \) is said to be the source of the dependence. \(S_j \) is said to be the sink of the dependence.
• The only “true” dependence is flow dependence; it represents the flow of data in the program.
• The other types of dependence are caused by programming style; they may be eliminated by re-naming.

\[
\begin{align*}
S_1 : & \quad A = 1.0 \\
S_2 : & \quad B = A + 2.0 \\
S_3 : & \quad A1 = C - D \\
\vdots \\
S_4 : & \quad A2 = B/C
\end{align*}
\]
Data Dependence (continued)

- Data dependence in a program may be represented using a dependence graph $G=(V,E)$, where the nodes V represent statements in the program and the directed edges E represent dependence relations.

\[
\begin{align*}
S_1 &: \quad A = 1.0 \\
S_2 &: \quad B = A + 2.0 \\
S_3 &: \quad A = C - D \\
& \quad \vdots \\
S_4 &: \quad A = B/C
\end{align*}
\]
Value or Location?

• There are two ways a dependence is defined: value-oriented or location-oriented.

S_1 : \ A = 1.0
S_2 : \ B = A + 2.0
S_3 : \ A = C - D
 :
S_4 : \ A = B/C
Example 1

\[
\begin{align*}
d \text{ i = 2, 4} \\
S_1 : & a(i) = b(i) + c(i) \\
S_2 : & d(i) = a(i) \\
\text{end do}
\end{align*}
\]

- There is an instance of \(S_1 \) that precedes an instance of \(S_2 \) in execution and \(S_1 \) produces data that \(S_2 \) consumes.
- \(S_1 \) is the source of the dependence; \(S_2 \) is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0. The dependence direction is \(\delta^t \).

\[S_1 \delta^t S_2 \quad \text{or} \quad S_1 \delta^t_0 S_2 \]
Example 2

```
do i = 2, 4
S1:   a(i) = b(i) + c(i)
S2:   d(i) = a(i-1)
end do
```

- There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 consumes.

- S_1 is the source of the dependence; S_2 is the sink of the dependence.

- The dependence flows between instances of statements in different iterations (loop-carried dependence).

- The dependence distance is 1. The direction is positive ($<$).

$$S_1 \delta^t S_2 \quad \text{or} \quad S_1 \delta_1^t S_2$$
Example 3

do i = 2, 4
S₁: a(i) = b(i) + c(i)
S₂: d(i) = a(i+1)
end do

- There is an instance of S₂ that precedes an instance of S₁ in execution and S₂ consumes data that S₁ produces.
- S₂ is the source of the dependence; S₁ is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1.

\[S₂ \delta^{a}_< S₁ \quad \text{or} \quad S₂ \delta^{a}_1 S₁ \]

- Are you sure you know why it is \[S₂ \delta^{a}_< S₁ \] even though S₁ appears before S₂ in the code?
Example 4

do i = 2, 4
do j = 2, 4
S: \quad a(i,j) = a(i-1,j+1)
end do
end do

- An instance of S precedes another instance of S and S produces data that S consumes.
- S is both source and sink.
- The dependence is loop-carried.
- The dependence distance is (1,-1).

\[S \delta^t_{(>,<)} S \quad \text{or} \quad S \delta^t_{(1,-1)} S \]
Problem Formulation

- Consider the following perfect nest of depth d:

$$
\begin{align*}
do \ I_1 &= L_1, \ U_1 \\
do \ I_2 &= L_2, \ U_2 \\
\cdots \\
do \ I_d &= L_d, \ U_d \\
 a(f_1(\bar{I}), f_2(\bar{I}), \ldots, f_m(\bar{I})) &= \cdots \\
\cdots &= a(g_1(\bar{I}), g_2(\bar{I}), \ldots, g_m(\bar{I})) \\
\end{align*}
$$

$$
\bar{I} = (l_0, l_1, \ldots, l_d) \\
\bar{L} = (l_0, l_1, \ldots, l_d) \\
\bar{U} = (u_0, u_1, \ldots, u_d) \\
\bar{L} \leq \bar{U}
$$

Linear functions:

$$b_0 + b_1 I_1 + b_2 I_2 + \cdots + b_d I_d$$

Array reference:

$$a(\ldots, f_k(\bar{I}), \ldots, \bar{I})$$

Subscript position:

$$a(\ldots, f_k(\bar{I}), \ldots, \bar{I})$$

Subscript function or subscript expression:

$$a(\ldots, f_k(\bar{I}), \ldots, \bar{I})$$
Problem Formulation

• Dependence will exist if there exists two iteration vectors \vec{k} and \vec{j} such that $\vec{L} \leq \vec{k} \leq \vec{j} \leq \vec{U}$ and:

$$f_1(\vec{k}) = g_1(\vec{j})$$
and
$$f_2(\vec{k}) = g_2(\vec{j})$$
and
$$\vdots$$
and
$$f_m(\vec{k}) = g_m(\vec{j})$$

• That is:

$$f_1(\vec{k}) - g_1(\vec{j}) = 0$$
and
$$f_2(\vec{k}) - g_2(\vec{j}) = 0$$
and
$$\vdots$$
and
$$f_m(\vec{k}) - g_m(\vec{j}) = 0$$
Problem Formulation - Example

\[
\begin{align*}
do & \; i = 2, \; 4 \\
S_1: & \; a(i) = b(i) + c(i) \\
S_2: & \; d(i) = a(i-1) \\
\end{align*}
\]

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that \(2 \leq i_1 \leq i_2 \leq 4 \) and such that:

\[i_1 = i_2 - 1? \]

- Answer: yes; \(i_1=2 \) & \(i_2=3 \) and \(i_1=3 \) & \(i_2 =4 \).
- Hence, there is dependence!
- The dependence distance vector is \(i_2 - i_1 = 1 \).
- The dependence direction vector is \(\text{sign}(1) = <. \)
• Does there exist two iteration vectors i_1 and i_2, such that $2 \leq i_1 \leq i_2 \leq 4$ and such that:

$$i_1 = i_2 + 1?$$

• Answer: yes; $i_1=3$ & $i_2=2$ and $i_1=4$ & $i_2 =3$. (But, but!).

• Hence, there is dependence!

• The dependence distance vector is $i_2-i_1 = -1$.

• The dependence direction vector is $\text{sign}(-1) = >$.

• Is this possible?
Problem Formulation - Example

\[
\begin{align*}
do & \ i = 1, \ 10 \\
S_1: & \ a(2i) = b(i) + c(i) \\
S_2: & \ d(i) = a(2i+1) \\
\text{end do}
\end{align*}
\]

• Does there exist two iteration vectors \(i_1\) and \(i_2\), such that \(1 \leq i_1 \leq i_2 \leq 10\) and such that:

\[2i_1 = 2i_2 + 1?\]

• Answer: no; \(2i_1\) is even & \(2i_2+1\) is odd.

• Hence, there is no dependence!
Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraint!
- An algorithm that determines if there exits two iteration vectors \vec{k} and \vec{j} that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by $\vec{j} - \vec{k}$
- The dependence direction vector is give by $\text{sign}(\vec{j} - \vec{k})$.
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.
Dependence Testers

• Lamport’s Test.
• GCD Test.
• Banerjee’s Inequalities.
• Generalized GCD Test.
• Power Test.
• I-Test.
• Omega Test.
• Delta Test.
• Stanford Test.
• etc...
Lamport’s Test

• Lamport’s Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

\[A(\ldots, b \cdot i + c_1, \ldots) = \ldots \]
\[\ldots = A(\ldots, b \cdot i + c_2, \ldots) \]

• The dependence problem: does there exist \(i_1 \) and \(i_2 \), such that \(L_i \leq i_1 \leq i_2 \leq U_i \) and such that

\[b \cdot i_1 + c_1 = b \cdot i_2 + c_2 \quad \text{or} \quad i_2 - i_1 = \frac{c_1 - c_2}{b} \]

• There is integer solution if and only if \(\frac{c_1 - c_2}{b} \) is integer.

• The dependence distance is \(d = \frac{c_1 - c_2}{b} \) if \(L_i \leq |d| \leq U_i \).

• \(d > 0 \Rightarrow \) true dependence.
\(d = 0 \Rightarrow \) loop independent dependence.
\(d < 0 \Rightarrow \) anti dependence.
Lamport's Test - Example

\begin{align*}
\text{do } i &= 1, n \\
\text{do } j &= 1, n \\
S: & \quad a(i,j) = a(i-1,j+1) \\
\text{end do} \\
\text{end do}
\end{align*}

\begin{align*}
i_1 &= i_2 - 1? \\
b &= 1; \ c_1 &= 0; \ c_2 &= -1 \\
& \quad \frac{c_1 - c_2}{b} = 1 \\
\text{There is dependence.} \\
\text{Distance (i) is 1.}
\end{align*}

\begin{align*}
\quad & \quad \text{or} \\
S \delta^t_{(1,-1)} S \\
S \delta^t_{(<,>)} S
\end{align*}
Lamport’s Test - Example

\[
\begin{align*}
\text{do } & i = 1, n \\
\text{do } & j = 1, n \\
\text{S: } & a(i,2*j) = a(i-1,2*j+1) \\
\text{end do} \\
\text{end do}
\end{align*}
\]

\[
i_1 = i_2 - 1?
\]

\[
b = 1; \ c_1 = 0; \ c_2 = -1
\]

\[
\frac{c_1 - c_2}{b} = 1
\]

There is dependence. Distance (i) is 1.

\[
2*j_1 = 2*j_2 + 1?
\]

\[
b = 2; \ c_1 = 0; \ c_2 = 1
\]

\[
\frac{c_1 - c_2}{b} = -\frac{1}{2}
\]

There is no dependence.

\[
?
\]

There is no dependence!
GCD Test

• Given the following equation:

\[\sum_{i=1}^{n} a_i x_i = c \quad \text{with } a_i \text{'s and } c \text{ are integers} \]

an integer solution exists if and only if:

\[\gcd(a_1, a_2, \ldots, a_n) \text{ divides } c \]

• Problems:
 – ignores loop bounds.
 – gives no information on distance or direction of dependence.
 – often \(\gcd(\ldots) \) is 1 which always divides \(c \), resulting in false dependences.
GCD Test - Example

do i = 1, 10
 \(S_1: \) \(a(2i) = b(i) + c(i) \)
 \(S_2: \) \(d(i) = a(2i - 1) \)
end do

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that \(1 \leq i_1 \leq i_2 \leq 10 \) and such that:

 \[2i_1 = 2i_2 - 1? \]
 or
 \[2i_2 - 2i_1 = 1? \]
- There will be an integer solution if and only if \(\gcd(2, -2) \) divides 1.
- This is not the case, and hence, there is no dependence!
GCD Test Example

\[
\text{do } i = 1, 10 \\
S_1: \quad a(i) = b(i) + c(i) \\
S_2: \quad d(i) = a(i-100) \\
\text{end do}
\]

• Does there exist two iteration vectors \(i_1\) and \(i_2\), such that
\(1 \leq i_1 \leq i_2 \leq 10\) and such that:

\[
i_1 = i_2 - 100? \\
\text{or} \\
i_2 - i_1 = 100?
\]

• There will be an integer solution if and only if \(\text{gcd}(1,-1)\) divides 100.

• This is the case, and hence, there is dependence! Or is there?
Dependence Testing Complications

• Unknown loop bounds.

\[
\text{do } i = 1, N \\
S_1: \quad a(i) = a(i+10) \\
\text{end do}
\]

What is the relationship between \(N \) and 10?

• Triangular loops.

\[
\text{do } i = 1, N \\
\text{do } j = 1, i-1 \\
S: \quad a(i,j) = a(j,i) \\
\text{end do} \\
\text{end do}
\]

Must impose \(j < i \) as an additional constraint.
More Complications

• User variables

\[
\begin{align*}
\text{do } i &= 1, 10 \\
S_1: & \quad a(i) = a(i+k) \\
\text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{do } i &= L, H \\
S_1: & \quad a(i) = a(i-1) \\
\text{end do}
\end{align*}
\]

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).

\[
\begin{align*}
\text{do } i &= 1, H-L \\
S_1: & \quad a(i+L) = a(i+L-1) \\
\text{end do}
\end{align*}
\]
More Complications: Scalars

```
do i = 1, N
S_1: \ x = a(i)
S_2: \ b(i) = x
end do

\Rightarrow

\begin{align*}
&\text{j = N-1} \\
do i = 1, N \\
S_1: \ x(i) = a(i) \\
S_2: \ b(i) = x(i)
\end{align*}

end do

\Rightarrow

\begin{align*}
&\text{j = N-1} \\
do i = 1, N \\
S_1: \ a(i) = a(j) \\
S_2: \ j = j - 1
\end{align*}

end do

\Rightarrow

\begin{align*}
&\text{sum = 0} \\
do i = 1, N \\
S_1: \ \text{sum} = \text{sum} + a(i)
\end{align*}

end do

\Rightarrow

\begin{align*}
&\text{sum = 0} \\
do i = 1, N \\
S_1: \ \text{sum(i)} = a(i)
\end{align*}

end do

\begin{align*}
\text{sum +=} \ \text{sum(i)} & \quad \text{i = 1, N}
\end{align*}
```
Serious Complications

- Aliases.
 - Equivalence Statements in Fortran:

    ```fortran
    real a(10,10), b(10)
    
    makes b the same as the first column of a.
    ```

 - Common blocks: Fortran’s way of having shared/global variables.

    ```fortran
    common /shared/a,b,c
    ::
    ::
    
    subroutine foo (...)
    common /shared/a,b,c
    
    common /shared/x,y,z
    ```
Loop Parallelization

• A dependence is said to be **carried** by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is **loop-independent**.

```plaintext
do i = 2, n-1
do j = 2, m-1
  a(i, j) = ...  
  ... = a(i, j)
  b(i, j) = ...  
  ... = b(i, j-1)
  c(i, j) = ...  
  ... = c(i-1, j)
end do
end do
```
Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

\[
\begin{align*}
\delta^+_{\leq, =} & \\
\text{do } i &= 2, n-1 \\
\text{do } j &= 2, m-1 \\
\text{a}(i, j) &= \ldots \\
\ldots &= \text{a}(i, j) \\
\text{b}(i, j) &= \ldots \\
\ldots &= \text{b}(i, j-1) \\
\text{c}(i, j) &= \ldots \\
\ldots &= \text{c}(i-1, j) \\
\text{end do} & \\
\text{end do} &
\end{align*}
\]
Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

\[
\begin{align*}
\text{do } i &= 2, n-1 \\
\text{do } j &= 2, m-1 \\
\quad a(i, j) &= \ldots \\
\quad \ldots &= a(i, j) \\
\delta^+_{=,\prec} \quad b(i, j) &= \ldots \\
\quad \ldots &= b(i, j-1) \\
\quad c(i, j) &= \ldots \\
\quad \ldots &= c(i-1, j) \\
\text{end do} \\
\text{end do}
\end{align*}
\]
Loop Parallelization

A dependence is said to be **carried** by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is **loop-independent**.

```plaintext
do i = 2, n-1
    do j = 2, m-1
        a(i, j) = ...
        ... = a(i, j)

        b(i, j) = ...
        ... = b(i, j-1)

        $\delta^+_{<,=}$ c(i, j) = ...
        ... = c(i-1, j)
    end do
end do
```
Loop Parallelization

A dependence is said to be **carried** by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is **loop-independent**.

```plaintext
* Outermost loop with a non “=“ direction carries dependence!
```
Loop Parallelization

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!
Loop Parallelization - Example

• Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel.
• Outer loop parallelism.
Loop Parallelization - Example

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.
- Inner loop parallelism.

```plaintext
\begin{align*}
\text{do } i &= 2, n-1 \\
\text{do } j &= 2, m-1 \\
\delta^+_{<,=} &
\begin{align*}
b(i, j) &= \ldots \\
\ldots &= b(i-1, j)
\end{align*}
\end{align*}
```

```plaintext
\begin{align*}
\text{end do} \\
\text{end do}
\end{align*}
```
Loop Parallelization - Example

• Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.
Why?
• Inner loop parallelism.
Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

```plaintext
    do j = 1, n
        do i = 1, n
            ... a(i,j) ...
        end do
    end do
end do
```
Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

\[
\begin{align*}
&\text{do } j = 1, n \\
&\quad \text{do } i = 1, n \\
&\quad \quad \text{... } a(i,j) \text{ ...} \\
&\quad \text{end do} \\
&\text{end do}
\end{align*}
\]

\[
\begin{align*}
&\text{do } i = 1, n \\
&\quad \text{do } j = 1, n \\
&\quad \quad \text{... } a(i,j) \text{ ...} \\
&\quad \text{end do} \\
&\text{end do}
\end{align*}
\]
Loop Interchange

- Loop interchange can improve the granularity of parallelism!

\[
\begin{align*}
do \ i = 1, n \\
do \ j = 1, n \\
a(i,j) &= b(i,j) \\
c(i,j) &= a(i-1,j) \\
end do \\
end do
\end{align*}
\]
Loop Interchange

- When is loop interchange legal?
Loop Interchange

- When is loop interchange legal?
Loop Interchange

• When is loop interchange legal?
When is loop interchange legal? when the “interchanged” dependences remain lexiographically positive!
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

```
do t = 1,T
  do i = 1,n
    do j = 1,n
      ... a(i,j) ...
    end do
  end do
end do
```
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n, B
 do t = 1, T
 do i = 1, B
 do j = 1, B
 ... a(ic+i-1,jc+j-1) ...
 end do
 end do
 end do
 end do
end do

B: Block size
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

\[
\begin{align*}
\text{do } & \text{ic }=1, \text{n, B} \\
\text{do } & \text{jc }=1, \text{n, B} \\
\text{do } & \text{t }=1, \text{T} \\
\text{do } & \text{i }=1, \text{B} \\
\text{do } & \text{j }=1, \text{B} \\
& \ldots \ a(\text{ic+i-1,jc+j-1}) \ldots \\
\text{end do} \\
\text{end do} \\
\text{end do} \\
\text{end do}
\end{align*}
\]

\(B: \text{Block size}\)
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

\[
\begin{align*}
\text{do } & \text{ic }=1, n, B \\
& \text{do } \text{jc }=1, n, B \\
& \quad \text{do } t = 1, T \\
& \quad \quad \text{do } i = 1, B \\
& \quad \quad \quad \text{do } j = 1, B \\
& \quad \quad \quad \quad \quad \quad a(ic+i-1,jc+j-1) \\
& \quad \quad \quad \end{align*}
\]

B: Block size

jc = 2
ic = 1

control loops
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

```
do ic = 1, n, B
  do jc = 1, n , B
    do t = 1,T
      do i = 1,B
        do j = 1,B
          ... a(ic+i-1,jc+j-1) ... 
        end do
      end do
    end do
  end do
end do
```

B: Block size

ic = 2

jc = 1

control loops
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 ... a(ic+i-1,jc+j-1) ...
 end do
 end do
 end do
 end do
end do

B: Block size

c: control loops

ic = 2

cj = 2
Loop Blocking (Tiling)

- When is loop blocking legal?